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The creation of new means and aids in interacting with digital sound syn-

thesis is of growing necessity in computer music, due to the proliferation of complex

synthesis algorithms and control interfaces. Herein, the goal of summing current

research areas, highlighting a new possibility, and pursuing this possibilty through

to implementation is pursued.
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Chapter 1

A Need for New Interaction

Computer music and it’s related fields have experience explosive growth

over the past half-century. The proliferation of dedicated softwares and languages,

digital musical instruments and interfaces, and creative output fueled by these

new technologies have led to a diverse set of subdisciplines, specializations and

practioners.

Within these subdisciplines, a number of innovators have pioneered the

choices available in interacting with digitally created sound. It is in this context

that parameter mapping and sonic interaction design have emerged as core con-

cerns in the ongoing creation of computer music paradigms. There are several

trends that concern these subdisciplines, and highlight its growing relevancy and

importance– the increasing complexity of synthesis algorithms, desire to control

these algorithms in real time and the explosion of consumer electronics being re-

purposed as musical interfaces.

1.0.1 Growing Parametric Complexity of New Synthesis

Algorithms

Through the past half-century, sound synthesis algorithms have evolved sig-

nificantly, influenced by both the advancement of techniques and increasing capa-

bility of the computers used in the process. Early sound synthesis algorithms, like

subtractive synthesis, relied on relatively few synthesis parameters. Sounds were

1
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specified in terms of both static and changing filter cutoffs, oscillator frequencies

and amplitudes, in keeping with the paradigm of electronic sound synthesizers of

the time.

In the latter half of the last century, significant advances in computation

and technique led to an explosion in complexity of input and computation, and a

break from the relative simplicity of classic means of electronic sound synthesis.

Algorithms like granular and physical modeling synthesis, and the growing density

and complexity of their execution, have led to growing demand on input and control

techniques.

Parameter mapping strategies seek to enable a performer or composer to

specify or interact with a smaller number of higher level controls, and use these

controls to generate and interpolate the lower level synthesis parameters needed

for actual computation and generation of sound. This allows for more expansive

predetermination of sound spaces, allowing greater flexibility and expressivity of

performance, and parametric adaptation to the possible permutations of control-

to-sound paradigms in digital musical instruments.

1.0.2 Real Time Control of Digital Sound Synthesis

The extension of flexibility and expressivity of digital musical instruments

coupled with growing computational power has led to the extension, even expec-

tation, of the real time capabilities of digitally synthesized sound. The fact that

computer music is now often performed live, and not only generated ahead of time

and accompanied or played back, has led to a need to design interfaces to facilitate

purposeful interaction with the sound synthesis algorithms.

This growing world of real time computer music performance has led to

the creation of a vast collection of digital musical instruments. These instruments,

often purpose built for specific algorithms or paradigms of digital sound synthesis,

take advantage of parameter mapping strategies to break otherwise complex algo-

rithms into high level controllers with a feasible, human scale number of inputs

and controls.

Even in real time score advancement and following scenarios, parameter
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mapping can be used to aid in simplifying compositional choices, helping to break

down an often tedious process of setting and keeping track of a large number of

states and performance variables.

1.0.3 Availbility of Low Complexity Digital Music Control

Interfaces

With the proliferation of consumer electronics beginning in the seventies,

coupled with the invention of personal computers, today’s marketplace is rife with

computer interfaces of all sorts. From the QWERTY keyboard to PC gaming

accesories, human computer interaction has flourished as a means of making the

intangible ones and zeroes of the computer real and interactive to their human

manipulators.

For digital music creators, this has meant a large expansion of options ava-

iable to performers, composers and engineers in designing and building interactive

musical scenarios on digital platforms. Game controllers become filter manipula-

tors, a keyboard becomes a score following aid, and the vast market of purpose built

music controllers incoroporate the real-world acoustic-like interactions available to

intrumentalists into the world of digital musical instruments.

This growing set of options has meant that the task of matching controller to

algorithm is a growing field of concern for all involved in the process of computer

music creation. Where some controllers allow a simple, one-to-one mapping of

control to algorithm, both the growing complexity of controllers, the emphasis

on real-time control, and the ever-expanding parameter space of new synthesis

algorithms stress the available solutions for parameter mapping.

1.1 The Creation of New Mapping Strategies

To meet the growing challenges of musical interaction in digital music, it is

necessary for those involved in building this interaction to research the possibilties

available to ease and expand these interactions.

These new, more complex parameter mapping strategies can be borrowed
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and derived from many fields and techniques. More recently, the ability to derive

these models form well known algorithmic means, intuition and emulation of more

acoustic-like paradigms of interaction have garnered a fair amount of attention.

Alongside these new derived models, there also lies a great wealth of po-

tential mapping schemes in related fields of research, both closely related like

human-computer interaction and distantly like dynamical systems and artificial

intelligence.

1.1.1 Deriving Musical Interaction Models

In terms of the derivation of new parameter mapping strategies, there are

several new techniques developing alongside those age old techniques in use since

the inception of computer music performance.

A growing means of designing new parameter mapping layers between con-

trol and algorithm is the use of genetic algorithms and adaptive computer pro-

cesses. Work done by Laine [1] in creating genetic algorithms that create digital

musical paradigms, Wanderley and Miranda’s exploration of genetic and other al-

gorithms in the creation of new digital musical instruments [2] and Dahlstedt’s

MutaSynth and work involving genetic algorithms and evolutinoary processes in

the creation of sound and musical instruments [3] all indicate the vast richness

of the inclusion of algorithmic determination of parameters and musical control

paradigms.

While old-fashioned one-to-one mappings of control to synthesizer parame-

ter are still overwhelmingly common, the intuitive process of matching control to

algorithm in a more complex manner is still being done with the aid of human in-

tuition. Specifically, perception dervied control parameters are being used widely

to sum the effect of a single parameter’s changing on the more complex timbral

changes inherent in complex parameter mapping. Wanderley’s ESCHER system

based on IRCAM’s jMax is a great example of this work[4], alongside the work of

Arfib et al. [5] and others[6][7].
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1.1.2 Borrowing Models

While previous methods can be perceived as the borrowing of tools from

psychoacoustics and computer science, both directly related to the computer music

field, many disciplines outside those closely related are being looked to for their

possible solutions in reducing dimensionality of data, parsing gestures and relating

the physical or mechanical worlds to the digital realm of computer sound synthesis.

Most directly, human computer interaction has been a constant source of

borrowed models, as its attempts to decode and describe human gestures in terms

of control and intent make it uniquely relevant. Once again, Hunt and Wanderley’s

work in the evaluation and creation of digital musical instruments is a testament

to this method’s effectiveness [8][9].

However, a growing set of disciplines, like that of interaction design, topol-

ogy and dynamical systems continue to tread into waters concerning those inter-

ested in the mapping of human input to sound output. Aside from the work done

in the following chapters, statistical techniques like principal component analysis

[10] and the development of terminology common across those in the fields of mu-

sic, science and interaction [11] point to the increasing interdisciplnarity of the

analysis of human intent, and the diverse means by which it may be decoded and

put to work.

1.2 Goals of This Research

Herein, the goals of this research are to take cues from the preceding pages

in identifying a new means by which control may be interpreted for digital sound

synthesis. Specifically, catastrophe theory, a subset of dynamical systems theory,

will be explored as a means of interpreting human control into more acoustic-

behaving algorithmic controls.

After a summation of currently available scenarios of control and parameter

mapping, and describing the need for new mapping paradigms, a new technique

using simple polynomials will be explored as a potential mapping scheme. This

new mapping strategy promises a simple, acoustic-like behavior that may port well
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to digital musical instruments.

Then, this new mapping strategy can be verified by looking to existing

acoustic-like behaviors in physical-modeling algorithms that may exhibit behaviors

similar to this mappings strategy. The hope is, that this technique not only works

well, but can be shown to have a direct tie to the behaviors of acoustical systems.



Chapter 2

Acoustics-like Dynamics in Signal

Based Models

The quality of a parametric sound synthesis model is not only determined by

its produced sound, but also by the richness, depth, and intuitiveness of its control.

As is the case with their acoustic counterparts, virtual musical instruments should

engage users with music and sonic possibilities, allowing for exploration, discovery,

and expression, with increased use, practice, and familiarity. A mapping strategy,

therefore, may be evaluated by its “virtuosic ceiling” (potential for maturation with

extended use) and its “entry fee” (ease of initial interaction)[12]. Balancing these

two attributes is an important aspect in designing a system whereby performative

gestures will be translated into synthesis parameters.

Physics-based synthesis models often have a myriad of possible synthesis

parameters, offering possibilities in the produced sound akin to their acoustic coun-

terparts. Though the complete set of possible parameters is usually too large to be

effectively controlled by the user in realtime, there is usually a subset of “control

parameters” that is naturally intuitive, largely because they are physical and relate

to acoustic instruments with which the user has some familiarity and experience:

blowing harder produces a louder sound; shortening the string produces a higher

pitch. In addition to offering a low “entry fee” (ease of use) without requiring

additional mapping, a quality physics-based model implements the dynamics of

the system (the produced sound being dependent on both the current state of the

7
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model/parameters and their change over time), which also, by nature, offers pos-

sibilities that raise the “virtuosic ceiling” (maturation): blowing harder produces

not only a louder sound, but also one that is brighter, harsher, detuned, or even

the octave above (overblowing).

In signal-based models, the relationship between control and synthesis pa-

rameters is far less obvious (to both developer and user), and a mapping strategy is

required to achieve a balance between ease of use and maturation. These mappings

can be difficult to create, due to both their abstraction from a more obvious linear

mapping, and their potential to create densely connected and difficult to debug

and describe interactions. Existing strategies have incorporated generative meth-

ods to produce these mappings[13, 14, 15] and many have developed taxonomies to

enable the decryption and development of these complex mappings[16, 17]. In this

work we present an approach to parameter-mapping that, by borrowing concepts

and models from catastrophe theory, aims to enrich signal-based models with the

inherent complexities/intuitiveness of those that are based on some more natural,

physically based musical interaction.

In an attempt to further the current mapping toolset, we have chosen to

examine catastrophe theory as a potential set of theorems and models. Work

done to extend the toolset available in creating these mappings is valuable to

performer, composer and designer alike, as creating new primitives in mapping

strategies yields a better set of design choices for the development of new mappings

of control to synthesis, and therefore a more dynamic and nuanced interaction

between instrument/interface designer, composer and performer.

In Section 2, we will examine catastrophe theory, its models and those

attributes that indicate its potential value to parameter mapping development.

In Section 3, we discuss its implementation, specifically in code via Pure Data

and in a parameter mapping paradigm within frequency modulation synthesis. In

Section 4 we discuss the results of these initial implementations, in Section 5 we

examine the research to suggest possible topics for expansion and investigation,

and in Section 6 we discuss the conclusions derived from our research.
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2.1 Catastrophe Theory

René Thom, a twentieth-century French mathematician, developed catas-

trophe theory as a means of explaining a set of complex singularities in geometry

and mathematics.[18][19] Thom’s work inspired many to pursue the conclusions of

catastrophe theory, not only in mathematics, but across disciplines. In his book

Catastrophe Theory, Sir E.C. Zeeman, a British mathematician and champion of

the relevancy of catastrophe theory across disciplines, presents several examples

of simple, catastrophic systems outside mathematical fields [20]. A number of

other researchers have used Thom’s work in modeling a number of sociological[21],

economic[22], physical[23], and biological[24] systems.

Catastrophe theory describes simple geometric models to explain systems

that yield drastic changes in state in response to slowly changing attributes or pa-

rameters. These models have been developed from theorems proposed by Thom,

that describe higher-dimensional geometry, specifically that of bifurcating sets of

higher-order polynomials. His work concerned itself specifically with the discon-

tinuities yielded by a number of special multi-dimensional geometric equations he

termed elementary catastrophes, which are classified by the dimensions of their

behavior and parameter spaces. The models Thom and Zeeman use to describe

these systems are eloquent in that they are simple polynomials, whose real roots

yield the stable states of the system, and whose coefficients shape the attributes

of the thresholds and surface of the models[25].

While these previous implementations of catastrophe theory have little to

prove for our mapping here, they point to the validity of catastrophe theory models

in a range of applications and disciplines.

The elementary catastrophe we will concern ourselves with herein will be a

lower dimensional model, due to its potential for representation on paper and its

relative ease of comprehension and application. The model is the cusp catastrophe,

which is described by a simple cubic polynomial, and from a two dimensional

control space yields a third, potentially bimodally distributed behavior axis, whose

value is dependent on previous states and trajectory through our control space.

The cusp is manipulated by adjusting the coefficients of a polynomial, using two
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Figure 2.1: The elementary cusp catastrophe. Our variable axes b (splitting
factor) and a (normal factor) and behavior axis x are labeled in the control surface
C, and several trajectories through this control surface are traced both on C and
their resulting values for x are traced on the behavior manifold M .

of these coefficients as navigational axes of a control space.

2.1.1 The Cusp Catastrophe

Catastrophe theory comprises a number of models that relate or map “at-

tributes” to “behavioral” states. One such model, called the cusp catastrophe, is

given by

chx
3 + bcwx + a = 0, (2.1)

where ch and cw are used to change the cusp height and width, respectively, and

coefficients a and b are input control parameters. The surface C in Figure 2.1 is

the control surface created by axes a and b, while the manifold cusped surface M

(above C) is defined by the real roots of (2.1). The positive and negative values

of x create the two sheets (upper and lower regions) of M .

Since (2.1) is a cubic polynomial, it has three roots. The shaded area on

control surface C, indicates values of a and b for which all three of these roots

are real—the bifurcating set. These three real roots define the folded or “cusped”
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region of the manifold surface M . Outside the shaded region in C lie values for

a and b yielding only a single real value for x. The two curved lines outlining

the shaded area are thus thresholds for which a and b yield single or multiple

(bifurcating) values of x. Bifurcating values of x appear for values of b > 0. For

b < 0, x increases continuously with a. Static coefficients, ch and cw, effectively

scale the coefficients a and b, thus skewing the dimensions of the cusp.

Fig. 2.1 shows several trajectories, labeled 1-4, of linearly changing values

for a and b. Trajectories 1 and 2 on C, which originate on either side of the

bifurcating set, produce different values for x, shown by corresponding trajectories

1 and 2 on M , despite a common destination point and similarly changing values

of a and b. This exemplifies the first of the catastrophe model’s attributes:

Attribute 1 The behavior resulting from a given set of control values is dependent

both on initial conditions and previous behavior.

Trajectories 3 and 4 illustrate the characteristic jumps, or “catastrophes,”

after which the models are named, which occur when moving from the bifurcating

set to the non-bifurcating set (jumps are illustrated in Fig. 2.1 using dashed lines

on M and occur at points on C when the trajectory moves from inside to outside

the shaded area). Furthermore, if a trajectory exits across the same threshold

from which it entered, i.e. remains on the same “sheet”, no jump occurs. This

exemplifies the second of the model’s attributes:

Attribute 2 Jumps in the value of x occur only upon exiting the bifurcating set

onto a new sheet.

2.1.2 Applying to Dynamic Systems

Though the cusp model has two input parameters, it generates another two,

yielding a total of four possible synthesis/application parameters: a, b, location

x on the cusp manifold surface, and a binary value indicating whether x is on

the upper or lower sheet. This increase indicates a potential value in parameter

mapping, as it suggests a possible mapping of a simple control space to a more

complex dynamic or sound synthesis system.
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Figure 2.2: The effects of different values of ch and cw on the shape of our cusped
surface. Axes are the same scale in all four plots.

Any system that exhibits:

1. bimodal distributions of behavior for a dynamic input (relating to Attribute 1),

2. drastic changes in behavior despite slowly changing control parameters (re-

lating to Attribute 2).

is a potential candidate for representation by a catastrophe model. Several such

systems exist in music applications. In particular, blowing into the mouthpiece

of a saxophone presents an example of an acoustic system that exhibits these

two attributes: slowly varying embouchure and blowing pressure (corresponding
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to control axes a and b) for a given fingering, produces a sound that can leap in

register/octave—a bimodality in state (Attribute 1) that can result in a jump in

x (Attribute 2). That is, the tendency of the horn to lock into an upper or lower

register, based on its previous state, exhibits Attribute 1. The tendency for a

horn to jump catastrophically in register despite slow changes in control exhibits

Attribute 2.

This simple catastrophic model of the saxophone shows the natural and

musical behavior of control parameters fed through a cusp model. This nuanced

behavior, coupled with the simplicity of the mathematics and rules of behavior,

point to a potentially rewarding mapping strategy.

2.2 Implementation

In implementing catastrophe theory and polynomial equations in a mapping

strategy, we are looking for complexity and capability in expression without dimin-

ishing the ability to use an interface effectively and easily. Furthermore, we hope

to reward maturation with an interface, providing a more complex and nuanced

interaction with the interface over time, more so than previously available without

a complex mapping. The cusp model (2.1) is implemented as a Pd external object

(written in C) [26], which offers a real-time interactive programming environment

popular among computer musicians.

The first step in implementation is to fully understand the effects of ma-

nipulating the coefficients of (2.1). Initial tests were run in graphing programs to

illustrate the width and height of the cusp for different values of ch and cw (see

Figure 2.2). Following this, implementation is straightforward. First, the Cusp

model is coded as a function having four input parameters, two static (cw and ch)

and two dynamic (a and b), and two returned values, x and a binary indicating

on which sheet, HIGH or LOW, x lies. Through experimentation, ch was deemed

unnecessary as it was nearly a scaling of x that could instead be more effectively

and predictably applied as a linear scaling of the output (reducing required inlets

in the Pd external to three).
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The function uses the cubic polynomial solver in the GNU Scientific Library,

as it returns only real values (and not complex values that have nothing to do with

surface M). This function takes our three coefficients above and three pointers to

memory locations in which it stores the returned roots of our equation. It also

returns an integer indicating whether there is one or three real roots, effectively

indicating whether we are in a bifurcating or non-bifurcating set of values for a

and b.

Finally, a state variable is used to “remember” on which sheet of the cusp

surface x resided in the previous time step, determining which of the roots of x,

lower or upper, should be returned (the middle value is not considered in these

models). Therefore, in this example we have a doubling of possible control param-

eters: the original a and b, plus two more given by the cusp model, x and sheet of

x.

This code can be further optimized by implementing our own polynomial

solver instead of calling an outside function (which itself makes several outside

function calls). Furthermore, a number of other techniques can be used to de-

termine the correct root, and some of these may be more optimal. Because this

code, wrapped as a Pd external, is computed for every sample, it may be used in

wave-shaping and audio-rate modulation, as well as control rate paradigm.

2.3 Application and Results

Here, we choose to explore its use in the context of an FM (frequency

modulation) synthesizer, to see how acoustic behavior as described in Section 2.2

can be incorporated in a signal-based model. A very simple implementation can be

observed in Figure 2.3, where the index of modulation is controlled by both x and

the binary HIGH/LOW sheet variable, while the carrier and modulator frequency

are controlled by a and b, respectively.

The patch illustrated in Fig. 2.3 was used as an experimentation platform

for determining the effect of our two generated parameters in very minimal signal-

based synthesis system. Frequency modulation was chosen for our familiarity with
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its common control mappings and produced sound.

The interface chosen for initial experimentation was a touch sensitive track-

pad, which returned an x and y value for a finger moved about its surface. By

implementing our mapping with the cusp modeling, we essentially are able to tra-

verse the lower and upper sheets of the model with our finger, and dictate the

behavior based on our trajectory across and around the thresholds of the model,

much as the paths in Fig. 2.1. This allows nuanced control of the output values,

as it is immediately possible for a novice user to locate, empirically, the location

of these thresholds and quickly learn to exploit or avoid their happening.

2.3.1 Cusps in Musical Control Paradigms

The cusp in the above patch maps timbre to our cusp model and pitch to

our input a and b. Several other implementations were made systematically to

determine by isolation the effect of cusp models on signal-based synthesis’s most

often used parameters, timbre, amplitude and pitch.

In Fig. 2.3 we have mapped our FM timbral parameter, the index of modu-

lation, to the x output by the cusp model. We also tested this same system without

the changing pitch, and therefore isolated timbral control with the cusped model.

This yields an interesting, pseudo-vocal behavior, jumps in sideband presence and

spread affecting a dynamic, albeit it expressively limited, control of timbre.

In other experiments, amplitude and pitch were controlled with the new

complex yielded parameters x and sheet of x. An interesting result of this experi-

mentation was the effect of the changing x without leaving the current sheet. The

effect was to obtain a vernier control of a small subset of the accessible control

space, effectively enabling a magnification of the values of x available on a given

sheet. When mapping to amplitude, at higher values of b, where the sheets are

most distant and the values of x therefore more disparate, this amounts to an

ability to make nuanced changes in loudness at either a lower piano dynamic or,

after jumping sheets, fine adjustments at a higher forte dynamic.

It is in our mapping of this model to pitch that the aforementioned “mag-

nification” of certain subsets of the control space is most notable. The lower



16

Figure 2.3: A simple patch illustrating the mapping of our four synthesis pa-
rameters (two generated by our cusp model, two direct from control) to a simple
FM-based synthesis algorithm.

portion of the control space allowed minute control of a lower pitch subset, and

after a jump, minute control of a higher pitch subset. As the middle pitches can

be accessed by simply decreasing b, this introduces a very interesting paradigm

of control. A scale running from lowest to highest pitch sets therefore runs in a

horseshoe shape, retreating around the bifurcating set of values of a and b and back

out to the higher sheet, without encountering catastrophic jumps but increasing

the nuance of control at all points. Furthermore, jumps of different sizes between

registers can be made easily and with some precision by simply locating the proper

crossing point of the threshold to take a path through.

These mappings to signal-based synthesis parameter primitives helped il-

lustrate the value of these models to the expansion of available parameter mapping

strategies. To our initial goal of introducing acoustic-like behavior to these simpler

signal based models, it points to observed behaviors, like the selective magnifica-

tion, that may map to acoustic-like paradigms.
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2.3.2 Introducing Acoustic-like Behavior to a Signal Model

The main purpose of these experiments is to determine if the two additional

parameters generated by the cusp model, x and sheet of x, are useful and intuitive

synthesis parameters. As previously illustrated, it can be shown that acoustic

systems have a tendency to behave like the cusped model, so our aim was to

investigate the presence of some more natural or acoustic-like behavior in the

mapping.

We can show this behavior by observing Attributes 1 and 2 in the process of

using the interface, and determine if they are related as predictable and controllable

features to a user.

By default a simple FM synthesis model has no inherent acoustic-like qual-

ities, as FM linearly mapped to the control parameters of a trackpad or other

continuous controller is dissimilar from any existing acoustic system. This allows

us to track the effect of introducing the cusp mapping, and evaluate it indepen-

dently of the synthesis algorithm’s behavior. This isolation of a mapping is key to

evaluating its worth, as many synthesis algorithms behave naturally and effectively

without an intermediate mapping between control and synthesis parameters.

First, the implementation of this model effectively enlarges the parameter

space of our sound synthesis system, as Attribute 1 shows that a large portion of

our control surface has two possible values of x. By introducing this bifurcating

behavior, like that found in acoustic systems, the parameter space of our interface

widens, and therefore a larger portion of the sound space of the synthesis algorithm

is available to a performer.

Furthermore, by using cusp-generated parameters x and sheet of x to control

the index of modulation, an abstract synthesis parameter without an acoustic

analog, we introduced a way of jumping between timbres of the synthesis algorithm.

Each sheet of the cusp maps to two different sound spaces, with finer adjustments

accessible using x, and a user can switch purposefully from one to another. These

jumps, described by Attribute 2, introduce a triggered, more dynamic behavior to

our previously linear interface.

Also, the complex behaviors of wind instruments discussed in Section 2.2
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can be modeled with careful application of the cusp model in mapping control

parameters. In experimentation, the sheet of x was mapped to pitch, while x was

mapped to index of modulation. This maping closely resembles the articulation

of a single keying of the saxophone, where an increase in embouchre and blowing

pressure will push the horn to both jump in octave (a catastrophic jump in pitch)

and harshen in timbre (an accompanying increase in x).

The selective magnification also has many acoustic analogs. Jumps between

registers as desribed above, with some small, more nuanced adjustments available

on either end of these jumps, also closely resembles paradigms present in wind

instruments. Again, the jumps can be associated with pitch, but if mapped with

proper scaling of x instead of the binary sheet of x, small adjustments in intonation

can be made in each register with some precision.

By identifying and exploiting these acoustic behaviors in our new mapping,

which introduce more complex expression and control in an otherwise simple sys-

tem, we have increased the potential for engagement and discovery in the process

of learning a musical interaction with a digital system. We have done this by re-

lating the interaction with a digital musical instrument to interactions a performer

and composer are more likely to have some experience with. Furthermore, we have

helped mediate the potential expressiveness of the vast sound space available in

signal-based models to a much smaller and simpler control space.

2.3.3 Balancing Complexity and Cost

Another main focus of these experiments is to determine the ability for a

user to easily acquire the mapping and behavior of the interface, and if maturation

with the system is rewarding over time. While the initial experiments are basic,

results indicate that the mapping has the potential to fulfill our two desired features

of a new mapping, namely the low entry fee and high virtuosic ceiling.

By scaling and offsetting our input parameters, the bottom half of the

trackpad can be kept near-linear, or without bifurcation (by keeping b < 0, as

shown in Fig. 2.1), and therefore more immediately intuitive, while still allowing

the top half to exhibit the more complex bifurcating behavior. By building this
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duality into the interface, it is possible for a simple interface to yield both easily

accessible and more complex behaviors.

Furthermore, several cusps can be implemented with differing dimensions

and locales on the control surface by simply adding more of these models in the

intermediary mapping layer. These additional mappings afford the same designed

duality in simplicity and complexity. We can therefore introduce the complexity in

behavior available with several cusps without accumulating complexity in the lower

half of our mapping and eliminating its ease of acquisition. These two conditions

satisfy the desire to find mappings both easy to acquire and rich in complexity and

nuance that can be acquired over time.

2.4 Conclusions

Catastrophe theory, as laid out by Thom and others, allows us the means

by which to extend the currently available tools used in parameter mapping. It

does so by supplying models in which a low number of parameters yield new and

complex output behaviors.

The cusp model from catastrophe theory is ideal for several reasons. First,

it is relatively easy to understand, due to its ease of representation in three di-

mensions on paper, and its low order polynomial description. It is also easy to

implement in code, and easier still to include in a mapping strategy once encapsu-

lated into an external or its equivalent outside of Pd.

The likeness of the cusp model to acoustical systems further extends the

implemented mappings, by extending their behaviors, size of control space, and

introducing control that is intuitive and nuanced like that of an acoustical system.

It allows for an acoustics-like dynamic for a signal based synthesis algorithm, by

introducing an intermediary mapping layer. We can see the real mapping benefits

of introducing both dynamic jumps in parameter range and the effect of bifurcating

control surfaces in both ease of control and likeness to acoustic analogs.

Furthermore, the cusp model, and other polynomials like it, is possible

to implement in a non-complicating manner. It can be subtle or drastic, with
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or without linear mapping possibilities behind some threshold, and multiplied in

number, all potentially without cost to the initial acquisition of the interface’s

function and the ease that simple mappings allow novice users to begin making

sound in a purposeful manner. It is this introduction of complexity without cost

that highlights the possibilities of these equations as tools in the mapping strategies

of larger, more complex algorithms.

2.5 Further Research

While this paper focuses on a simple implementation of a lower complexity

model of catastrophe theory, there is still more to do in terms of applying these

models and evaluating their wider uses and conclusions.

First and foremost, examination of all of catastrophe theory’s models, not

simply those more conveniently laid out on paper, is called for. While they do not

guarantee the possibility of nuanced or simple behavior like the cusp catastrophe

does, their higher level of input and output parameters suggest their potential

relevancy. One such model, the butterfly model, is suited for further research,

as its surface can also be traced with two parameters, and its coefficients and

behaviors are more complex. Initial experimentation with the butterfly model’s

behaviors show some promise for parameter mapping.

Second, catastrophe theory itself may well be worth examining in music and

sound synthesis outside of parameter mapping. Its relevancy in physics to describe

complex behaviors resembling resonance point to its potential use in modeling

the behavior of musical instruments, in terms of musical information retrieval or

parameter estimation techniques.

In effect, catastrophe theory’s implementation herein has only been the

initial stages of applying a theory to a new discipline. The scope of this article

was necessarily smaller in scope to more carefully explore a single implementation,

and without expansion outwards, this topic is not fully explored or tested.



Chapter 3

Deriving New Manifolds for

Parameter Mapping from

Acoustic Models

Following work done with the expansion of mapping strategies using polyno-

mial defined manifolds as parameter mapping layers, expanding upon the mapping

strategies available for simple control interfaces was shown to be a valid excercise.

While borrowing equations and models from other fields proved valid and

rewarding, a method by which these mappings could be derived from musical or

acoustical systems may serve to make many more strategies available.

To this end, a number of acoustic-like systems, specifically physical models

of musical instruments, can be probed and explored for behaviors like that of

the borrowed models, therefore both validating the use of borrowed systems and

yielding a potential for the specification of new mapping strategies and primitives.

3.1 Nonlinearity in Parameter-Sound Space

Current research demonstrates the existence of non-linearities inherent in

many musical systems. It is these non-linearities, like the behavior of vibrating

reeds and bowed strings for example, that often introduce the nuance of interaction

and extended behavior within a musical instrument. The introduction of mappings

21
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derived from these non-linear systems may serve to introduce a greater intuitiveness

of control and interesting behavior into signal-based means of sound synthesis.

It is necessary to look at these nonlinearities and how they arise in acoustical

systems to better inform our search for these behaviors.

3.1.1 Acoustical Nonlinearity

Using Fletcher’s The Nonlinear Physics of Musical Instruments as a guide,

nonlinearity in musical instruments can be found in many, if not all, musical

instruments.[27] For this work, the focus will be on the family of single reed instru-

ments, but they arise in all manner of instruments, from bowed string to impulse

driven instruments to the human voice.

In the single reed instruments, nonlinearity arises almost entirely in the

mouthpiece and reed itself. The resonating bore, aside from very minute turbulence

effects, is a simple passive linear system without great complexity. However, the

relationship between the pressure difference across the reed and volume flow at the

inlet of the pipe of the instrument is richly non-linear.

Some pioneering work has been done to describe these non-linear systems.

Work by Dalmont in 2003 served to both describe these behaviors and evaluate the

techniques in use to model these systems. Beyond the reed, the mouth, interior of

the mouthpiece and the coupling of the whole system have been described in great

detail.

Several models have been used to describe the non-linear element of the sin-

gle reed instrument, the mouthpiece/lips/reed system. First, there are elementary

models which describe the reed under steady flow conditions, ignoring dynamic

parameters and friction, and simplifying the mechanical response. After this early

model, the quasi-stationary model of air flow and the quasi-static model of the reed

are more current implementations of the reed system.[28] These models continue

to evolve today, and serve to highlight the complexity of the non-linearity in the

mouthpiece system. In examining this research, it is clear that we will be primarily

investigating the reed and air flow of the mouthpiece for cusp-like behavior.
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3.2 Exploratory Work

To discover and pinpoint nonlinearities in acoustic instruments that behave

similar to the cusp catastrophe, first the attributes of the cusp must be stated

explicitly, and those features identified in the behavior of these instruments. To

restate previous points, these are:

1. bimodal distributions of behavior for a dynamic input,

2. drastic changes in behavior despite slowly changing control parameters.

We therefore are looking for acoustic instruments that behave in a nonlinear

fashion where both a single given state can yield more than a single output, and a

slight change in this state can yield drastic change.

Furthermore, there is a feature that will prove important in identifying these

features in a system– that previous states influence the current stable state in the

bifurcating regions. In other words, the direction from which one approaches an

area with potential bimodality influences the output state once the bimodal state

is reached.

To begin, a sampling of instruments with known nonlinearities were iden-

tified and examined. Specifically, research on bowed strings[29], the human vocal

chords[30] and single reed instruments[31][32] were examined to determine the po-

tential for their behaviors to fit the predicted cusped model.

After researching these possible avenues, the behavior of a blown reed was

chosen for its clear illustration of the two aforementioned features. In terms of the

saxophone, a single keying, blowing pressure and embouchre tightness can exhibit

one of at least two sounding notes, and slight changes in any of these performative

parameters can yield a drastic change, a jump in octave or chaotic overblowing.

Furthermore, approaching these bimodal areas of performance from higher or lower

values for the above performance parameters directly influence the sounding note

or timbre.

After considering the difficulty and accuracy of current means of measuring

acoustic performative parameters, especially considering the difficulty of measuring
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those of a blown saxophone, and the relative difficulty in acquiring the necessary

resources (a very technically proficient saxophonist, the measurement system, and

a sufficient amount of time to gather the necessary sound samples) it was decided

that physical models of the systems would be the easiest means by which to capture

the exact behavior of the nonlinearities of a blown reed.

To this end, a number of physical models were explored, and a relatively

simple clarinet model was chosen as particularly reactive and unstable, and the

fact that many physical models are bounded by “performative” space. In other

words, after some exploratory tinkering, it was found that many physical models

remain quiet or are entirely noise at the extremes of synthesis parameters, and

therefore less useful in locating the exact behavior of their nonlinearities.

3.2.1 Methods

In order to identify the exact behavior of the nonlinearities in a system,

it was first important to establish bounds for the parameters of blowing pres-

sure and “jet width,” our substitution for embouchre pressure (discovered through

exploratory work to be an effective replacement). Alongside these bounds, appro-

priate fixed values for the models other input parameters were decided upon, based

on their effect on the output.

By fixing all but the two desired input parameters, it allowed to imagine the

axes of our cusp catastrophe’s control surface C to be these two parameters, and

the third observed sonic behavior of our model to determine the third dimension

that would comprise our values for the catastrophe manifold M.

The next step was to determine what the measured feature of the sonic

output would be, more specifically. After exploring several possibilties like pitch,

amplitude and certain spectral features, spectral centroid was decided upon as an

effective indication of output in relation to the model output’s octave and timbre.

After fixing the experiment’s parameters, the last methodological step was

to determine a means of stepping through the parameter values in such a way that

the characteristic jumps of the predicted catastrophe may be observed. In the end,

an alternating right to left and left to right incrementing scan of the parameter
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Figure 3.1: The method of scanning the sound space through the manipulation
of two parameters. The above plane is comprised of our two synthesis parameters,
here alpha and beta, and our trajectories through their values indicated by the
arrows. The goal of this method is to find certain points, indicated by the x on the
graph above, in which a drastic change in state occur. If the underlying pattern
of these breaks resembles the curve fitted above, we can infer that the behavior of
our model is similar to that of the cusped catastrophe.

space, as described in figure 3.2, was decided upon for its ability to detect the

jumps and telltale cusped pattern that was predicted.

Many passes, at various fixed parameter values, we recorded, and both

sonograms and measurements of spectral centroid were taken, and then compared

to predicted patterns.

3.3 Results

After many passes at low fixed parameter settings, it was quickly deter-

mined that the chosen model’s non-linearities laid in more extreme values for fixed

parameter settings. This presented two challenges- the first that spectral centroid

readings were less salient, as the output was largely chaotic during leaps between

stable oscillating states, and that sonograms became less legible in the face of noisy

output.

However, in terms of finding the characteristic leaps between stable states,



26

Figure 3.2: A sample of the sonograms generated, with imposed vertical lines at
the points of jumping between octaves. By reversing one file and comparing them
side by side, the exact point at which they break can be compared, and therefore
determined to be in or out of sync. As seen above, they are significantly out of
sync, helping bolster the opinion that these areas of bifurcation may behave much
like those of the catastrophic cusp model.

the dependency on previous state and approach of parameters to the leaps, and

therefore the bimodal areas of certain parameter values were all observed, though

with some difficulty. In the end, sonograms were chosen as the most easily readable

measurements.

The generated sound samples were compared side by side, with one file

reversed. From these comparisons, the moments of stability and jumps could be

compared in time, to determine their syncronicity. As expected, the jumps do not

match, and show a tendency to remain in their given octave, and hold on before

jumping. This illustrates the characteristic inertiatic non-linearity that we see in

the cusp.

However, the exact shape and features of the bifurcating region was mushc
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more difficult to reliably determine, for two distinct reasons. For one, the challenges

presented by the chaotic and noisy output of the model in legibility of results and

accuracy of spectral centroid.

So, the observed behavior is enough to confirm the existence of non-linearities

that fulfill some of the aforementioned attributes of the cusp catastrophe. These

are encouraging results, although insufficient to concretely confirm the exact shape

and features of the present cusp, as much of the spectral centroid data was too

noisy for extrapolation into a manifold. Therefore, the goal of implementing a

derived manifold, in the place of the ideal/predicted manifold cannot be realized.

3.4 Further Work

After the successes and shortcomings of the experiment, there is certainly

further work to be done, both in expanding the previous experiment and working

with alternate models.

First, it is important to solidify the previous results, by reexamining the

previous experiment with a different single reed model. While the model used

was shown to possess the sought for non-linearities, another model may serve to

highlight the existing cusp without the noise and uncertainty found in the current

model. This would allow for a clean manifold to be derived and implemented in

mapping, and allow the features of the cusp to be accurately described.

Second, and maybe most interesting and expansive, is to recreate the exper-

iment with a number of other types of physical modeling algorithms. Illuminating

the parameter-sound space dimensions and behavior of their non-linearities would

be a rewarding and potentially useful exercise, both in furthering parameter map-

ping and characterizing various physical models and their behavior.

Third, to gather and analyze real world acoustic behaviors with the same

goals. This would prove to confirm any results gained in this or further experimen-

tation. It would also yield more manifolds that may be implemented as parameter

mapping layers.
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